

# Table olives processing in Greece Dr Efstathios Z. Panagou





Aix en Provence, 27 March 2015



# Table olive varieties







## Primary sector - Importance

- + Table olive producers:
- + Cultivated olive trees:
- + Cultivated area:
- + Overall production:
- Processed volume:

- 50.000-60.000 25-30.000.000 153.000 ha 200.000 tonnes
- 90-100.000 tonnes





# Table olive cultivation areas





# Table olive varieties- Conservolea





- Amounts to 51% of total olive production in Greece
- Average size: 180-200 fruits/kg
- Processed as Spanish-style green and naturally black olives
- Flesh-to-pit ratio: 8:1
- Oil content: 20-25% (w.b.)
- Fermentable material: 2-3% (w.b.)
- Similar to Manzanilla



# Table olive varieties- Halkidiki





- Amounts to 26% of total olive production in Greece
- Average size: 120-140 fruits/kg
- Processed as Spanish-style green olives
- Flesh-to-pit ratio: 10:1
- Oil content: 19-20% (w.b.)
- Similar to Gordal



# Table olive varieties- Kalamon





- Amounts to 20% of total olive production in Greece
- Average size: 220-240 fruits/kg
- Processed as naturally black olives
- Flesh-to-pit ratio: 8:1
- Oil content: 25% (w.b.)
- Fermentable material 3.1-3.5% (w.b.)



# Table olive varieties- Thassos





- Processed as dry-salted olives
- Flesh-to-pit ratio: 6:1
- Oil content: 26% (w.b.)
- Fermentable material 3.5% (w.b.)
- Limited interest in the international market
- Consumed locally



## Protected Destination of Origin (PDO) table olives

- Kalamata olives
- Conservolea Amfissa
- Conservolea Arta
- Conservolea Atalanti
- Conservolea Rovies
- Conservolea Stylida
- Conservolea Pilion, Volos
- Thrubolea Thassos
- Thrubolea Chios
- Thrubolea Ambadias, Rethymno, Crete



# Trade preparations







## **Basic Trade Preparations**

(Olive Oil Council, Trade Standards Applying to Table Olives)



Natural olives in brine (known as Greek type)



• Treated olives in brine (Known as Spanish style)



Olives darkened by oxidation (Californian type)



Dehydrated and/or shrivelled olives



Spanish-style green olives







## Naturally black olives in brine (Greek style)





## Olives darkened by oxidation (black ripe olives)





# Dry salted olives





## Production of different types of table olives





# The table olive sector







Table olive processing takes place in:
Small-scale farmers' installations
Cooperative owned installations (20)
SMEs (50)

Overall capacity: 100-110.000 tonnes

SMEs with exporting orientation are organised in the Panhellenic Association of Table Olive Producers, Packers and Exporters (PEMETE) to support the product in domestic and international market



### Table olive production in Greece, 2003-2011 (x1000 tonnes)





#### Table olive consumption in Greece, 2001–2010 (x1000 tonnes)





## Table olive consumption characteristics

#### Consumers preference:

- 65-70% naturally black olives
- 20% green olives Spanish-style
- 10-15% other types (e.g. dry-salted olives)

#### Demand for table olives (2008)

- Urban areas: 260 g/month/household
- Rural areas: 427 g/month/household
- Average expenditure/household 1.15 € (urban areas) and 1.48 (rural areas)

The value of domestic market in 2009/10 was estimated to 41 million euros

Source: ICAP GROUP (2011), Table olives



## Table olives - from the farm to the consumer





The consumption of packaged and standardized products in Greece is generally low (<10%)



## Table olive marketing in Greece



## Retail outlets



## Quality control of table olives in Greece Inspection authorities

 Ministry for Agriculture, based on the Presidential Decree 221/79 "...for standardization, packaging and quality control of table olives destined for exportation"





## Quality control of table olives in Greece Inspection authorities

 Table olives destined for the domestic market are inspected by EFET (Hellenic Food Authority)





# Greek style olives (naturally black)







## Naturally black olives in brine (Greek-style table olives)

## Advantages:

- Natural processing with minimum input of chemicals
- Simple processing (traditional anaerobic method)
- Low energy consumption

## **Disadvantages:**

- Time consuming process (6-7 months)
- Possible damage to the crop before harvest due to early frosts



# Table olive fermentation

- Fermentation is a basic step in green and natural black table olive processing.
- It is undertaken by the autochthonous microorganisms present on the raw olive fruits.
- On immersion in the brine, a fraction of these microbes migrate in the brine and assimilates and fermentable material diffused from the olive flesh.
- Anaerobic conditions, salt concentration and the gradual decrease in pH have a selective role on microbial activity.
- Under normal conditions, lactic acid bacteria and yeasts dominate the process.
- Basic metabolic products: Lactic acid, acetic acid and ethanol.





- Rapid dominance of the technological microbiota to minimize spoilage risk.
- Development of the appropriate physicochemical characteristics (pH, acidity) that will ensure the microbiological stability of the product during storage even at ambient temperature.
- Improvement of sensory characteristics.





# Final metabolic products



#### (b)

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.



# Influence of green olive and black oxidised olive processing on olive composition

| Treatment                                   |               | Changes in composition                                                                                                                                         |
|---------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brining or immersion in acidic solution     | Prior storage | Slow loss of sugars and polyphenols.                                                                                                                           |
|                                             |               | Formation of organic acids,<br>ethanol, and other aromatic<br>compounds.                                                                                       |
| Alkali treatments,<br>washing and oxidation | Darkening     | Hydrolysis of oleuropein. Loss<br>of sugars and organic acids.<br>Polymerisation of polyphenols<br>(caffeic and hydroxytyrosol).<br>Loss of soluble components |
| Addition of new brine                       | Packing       | Iron adsorption                                                                                                                                                |
|                                             | Sterilisation | Loss of texture                                                                                                                                                |
|                                             | Shelf life    | None under normal conditions                                                                                                                                   |



# Main changes in Greek natural black olives in brine

| Treatment                            |              | Changes in composition                                                                       |
|--------------------------------------|--------------|----------------------------------------------------------------------------------------------|
| Addition of brine                    | Brining      | Slow loss of sugars, organic<br>acids, polyphenols, minerals<br>and other soluble components |
| Correction of salt<br>content and pH | Fermentation | Formation of organic acids,<br>ethanol, acetaldehyde, ethyl<br>acetate, etc.                 |
| Addition of new brine                | Packing      | New dilution of soluble components                                                           |
|                                      | Shelf life   | None under normal conditions                                                                 |



## Processing – traditional anaerobic method

- Olives are placed directly in brine, 8-10% NaCl or even more
- Under these conditions, fermentation is carried out primarily by yeasts, gram-negative bacteria and <u>sometimes lactic acid bacteria</u>
- Fermentation is both alcoholic and lactic (to a lesser extend)
- The final product has pH 4,5-5,5 and titratable acidity 0,3-0,5% (expressed as lactic acid)



## Processing – new approach

- Olives are placed directly in brine at 6-7% NaCl, which is kept constant throughout fermentation
- These conditions favour the growth of lactic acid bacteria which become the dominant microbiota. Yeasts co-exist with lactic acid bacteria at lower population densities
- Fermentation is primarily lactic and alcoholic (to a lesser extend)
- The final product has pH 3,8-4,0 and titratable acidity 0,8-1,0% (expressed as lactic acid)
- After fermentation, NaCl is adjusted to 8% to avoid spoilage
- Srine acidification is usually carried out with lactic acid



## Effect of NaCl on population dynamics during fermentation at 25°C



- lactic acid bacteria, -O- yeasts, - $\triangle$ - enterobacteria - $\star$ - pseudomonads

Tassou, C.C., Panagou, E.Z. and Katsaboxakis, K.Z. (2002) Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines, *Food Microbiology* 19:605-615.


# Effect of NaCl on population dynamics during fermentation at 18°C



#### -<u>-</u>-lactic acid bacteria, -O- yeasts, - $\triangle$ - enterobacteria, -**\***- pseudomonads

Tassou, C.C., Panagou, E.Z. and Katsaboxakis, K.Z. (2002) Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines, *Food Microbiology* 19:605-615.



Effect of NaCl level on pH and titratable acidity profile during fermentation at 25°C





#### Fermentation tanks





#### Temperature control of fermentation tanks





#### Temperature control of fermentation tanks





## Microorganisms on the surface of raw olives





### Stomata opening on raw olives





## Stomata opening blocked with:



#### Fungal spore





#### Stomata opening on raw olives





# Spatial distribution of microorganisms during fermentation





# Dry salted naturally black olives







#### Dry salting process



E. Z. Panagou (2006) Greek dry-salted olives: Monitoring the dry-salting process and subsequent physicochemical and microbiological profile during storage at 4 and 20°C, Lebensmittel-Wissenchaft und-Technologie 39:323-330.



## Dry salting process

| Microorganism        | Dry salting period (days) |               |               |               |               |  |  |
|----------------------|---------------------------|---------------|---------------|---------------|---------------|--|--|
|                      | 0                         | 20            | 40            | 60            | 80            |  |  |
| Total viable counts  | $6.5 \pm 0.7$             | $5.9 \pm 0.4$ | $4.7 \pm 0.6$ | $5.6 \pm 0.5$ | $6.0 \pm 0.4$ |  |  |
| Lactic acid bacteria | $4.1 \pm 0.3$             | <1            | <1            | <1            | <1            |  |  |
| Yeasts               | $5.7 \pm 0.6$             | $5.6 \pm 0.2$ | $4.7 \pm 0.5$ | $5.6 \pm 0.4$ | $6.0 \pm 0.5$ |  |  |
| Enterobacteria       | $3.7 \pm 0.9$             | <1            | <1            | <1            | <1            |  |  |
| Pseudomonads         | $4.0 \pm 0.5$             | < 10          | <10           | <10           | <10           |  |  |

Initial microbiota consists of lactic acid bacteria, yeasts and gram negative bacteria

Salt exerts a selective action resulting in the survival of salt tolerant yeasts

E. Z. Panagou (2006) Greek dry-salted olives: Monitoring the dry-salting process and subsequent physicochemical and microbiological profile during storage at 4 and 20°C, Lebensmittel-Wissenchaft und-Technologie 39:323-330.



#### Characteristics of the final product

- pH: 4.9-5.2
- Sodium chloride content in the flesh: 8.5-10.0 %
- Water activity: 0.75-0.85 (depending on the duration of the process)
- Reducing sugars: ~ 2%
- Dominant microbiota: salt tolerant yeasts (Candida famata)

Olives are marketed without brine (in dry) and are thus susceptible to fungal spoilage. There is external (visible) and internal (invisible) growth of mycellium.



Dry salting process





## Growth of internal mycelium





#### Growth of internal mycelium under SEM





#### Treatments to minimise the extend of fungal growth



100% *CO*<sub>2</sub>

100% N<sub>2</sub>

Dip in 1% (w/v) potassium sorbate for 10 min



## Reduced salt natural black olives







- Sodium intake limit 2.4 g/day or 6 g NaCl/day (WHO, 2007).
- In many industrialized countries sodium intake ranges between 3600-4800 mg/day
- 75% of sodium intake comes from processed food, 10-12% is naturally occurring in foods, and 10-15% comes from food cooking or at the table.
- There is danger for (hypertension, strokes, cardiovascular diseases).
- Sodium intake reduction has the same importance as fat and sugar intake reduction.





#### Minimum salt content of various trade preparations

| Preparation                            | Minimum sodium chloride<br>content % |          | Maximum pH limit |             |          | Minimum lactic acidity<br>% lactic acid |             |          |      |
|----------------------------------------|--------------------------------------|----------|------------------|-------------|----------|-----------------------------------------|-------------|----------|------|
|                                        | SCC,<br>MAT                          | PR,<br>R | P, S             | SCC.<br>MAT | PR,<br>R | P, S                                    | SCC,<br>MAT | PR,<br>R | P, S |
| Treated olives                         | 5                                    | 4        | GMP              | 4.0         | 4.0      | 4.3                                     | 0.5         | 0.4      | GMP  |
| Natural olives                         | 6                                    | 6        | GMP              | 4.3         | 4.3      | 4.3                                     | 0.3         | 0.3      | GMP  |
| Dehydrated and/or<br>shrivelled olives | 10                                   | 10       | GMP              | GMP         | GMP      | GMP                                     | GMP         | GMP      | GMP  |
| Olives darkened by oxidation           | GMP                                  | GMP      | GMP              | GMP         | GMP      | GMP                                     | GMP         | GMP      | GMP  |

#### PROPOSED DRAFT REVISION TO THE CODEX STANDARD FOR TABLE OLIVES



#### Sources of salt intake



# NaCl substitution – Mixture experiments with potassium chloride and calcium chloride

| Fermentation | NaCl (%) | KCl (%) | CaCl <sub>2</sub> (%) |
|--------------|----------|---------|-----------------------|
| 1            | 8        | 0       | 0                     |
| 2            | 4        | 4       | 0                     |
| 3            | 4        | 0       | 4                     |
| 4            | 0        | 8       | 0                     |
| 5            | 0        | 4       | 4                     |
| 6            | 0        | 0       | 8                     |
| 7            | 2,66     | 2,66    | 2,66                  |
| 8            | 5,33     | 1,33    | 1,33                  |
| 9            | 1,33     | 5,33    | 1,33                  |
| 10           | 1,33     | 1,33    | 5,33                  |



# Mixture experiments with sodium chloride, potassium chloride and calcium chloride





### Partial substitution of salt

• Question 1: Is there a normal fermentation procedure with partial/total substitution of salt?

• Question 2: Do olives maintain acceptable sensory characteristics?





log<sub>10</sub> CFU/ml

#### Microbiological changes of selected fermentations





Fermentation time (days)



#### Changes in pH and acidity of selected fermentations



Fermentation time (days)

#### Sensory profile of selected fermentations





# Texture improvement with the use of calcium chloride





#### Texture improvement - Addition of 0.5% CaCl<sub>2</sub>



C.C. Tassou, C.Z. Katsaboxakis, D.M.R. Georget, M.L. Parker, K.W. Waldron, A.C. Smith, E.Z. Panagou (2007). Effect of calcium chloride on mechanical properties and microbiological characteristics of cv. Conservolea naturally black olives fermented at different sodium chloride levels. *J. Sci. Food. Agric.*, 87°:1123-1131.

# SEM image of skin and outer flesh of Conservolea olive fermented in 4% NaCl with/without 0.5% CaCl<sub>2</sub>



#### Without CaCl<sub>2</sub>

With 0.5% CaCl<sub>2</sub>

C.C. Tassou, C.Z. Katsaboxakis, D.M.R. Georget, M.L. Parker, K.W. Waldron, A.C. Smith, E.Z. Panagou (2007). Effect of calcium chloride on mechanical properties and microbiological characteristics of cv. Conservolea naturally black olives fermented at different sodium chloride levels. J. Sci. Food. Agric., 87:1123-1131.



## Antioxidant potential of table olives







#### Concentration of polyphenols in Greek table olives varieties







Method FRAP (Ferric Reducing Antioxidant Power)

#### Antioxidant potential of table olives compared to other fruits

TABLE 2

Ferric reducing-antioxidant power (FRAP), total radical-trapping antioxidant parameter (TRAP) and Trolox equivalent antioxidant capacity (TEAC) of fruit extracts<sup>1,2</sup>

|                         | FR                                                      | AP   | TR         | AP   | TEAC  |      |
|-------------------------|---------------------------------------------------------|------|------------|------|-------|------|
| Fruit                   | Value                                                   | Rank | Value      | Rank | Value | Rank |
|                         | (mmol Fe <sup>2+</sup> /kg FW <sup>3</sup> ) (mmol Trol |      | lox/kg FW) |      |       |      |
| Apple (red Delicious)   | 3.84                                                    | 24   | 2.23       | 20   | 1.59  | 22   |
| Apple (yellow Golden)   | 3.23                                                    | 26   | 1.54       | 24   | 1.31  | 25   |
| Apricot                 | 4.02                                                    | 23   | 2.29       | 19   | 1.44  | 24   |
| Banana                  | 2.28                                                    | 28   | 1.05       | 27   | 0.64  | 30   |
| Blackberry              | 51.53                                                   | 1    | 21.01      | 1    | 20.24 | 1    |
| Blueberry               | 18.61                                                   | 9    | 9.30       | 7    | 7.43  | 10   |
| Cherry                  | 8.10                                                    | 16   | 4.17       | 12   | 2.69  | 16   |
| Clementine              | 8.88                                                    | 15   | 2.74       | 16   | 3.10  | 14   |
| Fig                     | 5.82                                                    | 20   | 2.06       | 21   | 2.47  | 18   |
| Grape (black)           | 11.09                                                   | 12   | 2.50       | 17   | 3.85  | 13   |
| Grape (white)           | 3.25                                                    | 25   | 1.59       | 23   | 2.48  | 17   |
| Grapefruit (yellow)     | 10.20                                                   | 13   | 4.04       | 13   | 3.05  | 15   |
| Kiwi fruit              | 7.41                                                    | 17   | 2.30       | 18   | 2.28  | 19   |
| Loguat                  | 2.70                                                    | 27   | 1.73       | 22   | 0.75  | 27   |
| Melon (cantaloupe)      | 5.73                                                    | 21   | 0.95       | 22   | 1.20  | 26   |
| Melon (honeydew)        | 2.27                                                    | 29   | 1.12       | 26   | 0.65  | 29   |
| Olive (black)           | 39.99                                                   | 4    | 18.08      | 20   | 14.73 | 3    |
|                         | 24.59                                                   | 4    | 14.64      | 2 3  | 14.73 | 3    |
| Olive (green)           |                                                         | -    |            |      |       | 9    |
| Orange                  | 20.50                                                   | 8    | 5.65       | 11   | 8.74  |      |
| Peach (yellow)          | 6.57                                                    | 19   | 1.49       | 25   | 1.67  | 21   |
| Pear                    | 5.00                                                    | 22   | 3.87       | 14   | 2.19  | 20   |
| Pineapple               | 15.73                                                   | 10   | 5.92       | 10   | 9.91  | 8    |
| Plum (red)              | 12.79                                                   | 11   | 8.09       | 9    | 5.11  | 11   |
| Prickly pear            | 6.97                                                    | 18   | 2.06       | 21   | 1.46  | 23   |
| Raspberry               | 43.03                                                   | 3    | 10.48      | 5    | 16.79 | 2    |
| Redcurrant              | 44.86                                                   | 2    | 12.14      | 4    | 14.05 | 4    |
| Strawberry (cultivated) | 22.74                                                   | 7    | 8.56       | 8    | 10.94 | 6    |
| Strawberry (wild)       | 28.00                                                   | 5    | 10.34      | 6    | 11.34 | 5    |
| Tangerine               | 9.60                                                    | 14   | 2.76       | 15   | 4.16  | 12   |
| Watermelon              | 1.13                                                    | 30   | 0.46       | 29   | 0.69  | 28   |
| watermeion              | 1.13                                                    | 30   | 0.46       | 29   | 0.69  |      |



## Functional table olives






#### FP7-SME-2008-2-243471

# "PROBIOLIVES"

Table olive fermentation with selected strains of probiotic lactic acid bacteria. Towards a new functional food.





### Activities-Targets of the project





Cluster analysis of PFGE *Apa*I digestion fragments of the different lactic acid bacteria strains recovered from olives and brine calculated by the unweighted average pair grouping method. The distance between the pattern of each strain is indicated by the mean correlation coefficient (r%).

71 different strains of LAB species isolated from Greek olives that contribute to fermentation

13 Lactobacillus plantarum
37 Lb. pentosus
1 Lb. paraplantarum
2 Lb. casei group (Lb. casei,
Lb. paracasei)

Leuconostoc mesenteroides
 Ln. pseudomesenteroides

From those 9 were found to posses PROBIOTIC PROPERTIES IN VITRO

# Selected strains with probiotic potential according to *in vitro* tests in comparison with the *Lb. casei* Shirota, and *Lb. rhamnosus* GG

|                                                    | Test             |                                  |                              |                                      |                               |                            |  |  |
|----------------------------------------------------|------------------|----------------------------------|------------------------------|--------------------------------------|-------------------------------|----------------------------|--|--|
| Strains                                            | Low pH<br>(SR%)ª | Bile salts<br>(SR%) <sup>b</sup> | Bile salts<br>hydrolysi<br>s | Haemolyti<br>c activity <sup>d</sup> | Antibiotic<br>resistance<br>e | Caco-2<br>(Adherence<br>%) |  |  |
| Lb. pentosus B281                                  | 95.64            | 94.78                            | 0 c                          | α                                    | K, C, S                       | 37.21                      |  |  |
| Lb. pentosus E97                                   | 89.69            | 96.79                            | 0                            | γ                                    | K, C, S                       | 39.76                      |  |  |
| Lb. pentosus E104                                  | 92.52            | 97.64                            | 0                            | γ                                    | K, G                          | 33.72                      |  |  |
| Lb. pentosus E108                                  | 91.08            | 100.59                           | 0                            | γ                                    | К, А                          | 60.78                      |  |  |
| Lb. plantarum B282                                 | 87.79            | 100.09                           | 1                            | γ                                    | K, G, E                       | 68.94                      |  |  |
| <i>Lb. plantarum</i> E10                           | 89.95            | 98.67                            | 1                            | γ                                    | K, G                          | 44.75                      |  |  |
| <i>Lb. plantarum</i> E69                           | 98.36            | 100.02                           | 0                            | γ                                    | K, G                          | 30.51                      |  |  |
| <i>Lb. paracasei</i> subs.<br><i>paracasei</i> E93 | 89.41            | 96.55                            | 0                            | ٧                                    | K, G, S                       | 41.92                      |  |  |
| <i>Lb. paracasei</i> subs.<br><i>paracasei</i> E94 | 82.75            | 88.80                            | 0                            | Y                                    | K, G, S                       | 74.02                      |  |  |
| <i>Lb. casei</i> Shirota                           | 82.83            | 100.20                           | 0                            | Y                                    | S, E, P, T,<br>C              | 31.41                      |  |  |
|                                                    |                  |                                  |                              |                                      |                               |                            |  |  |

<sup>a</sup> survival rate after 3h in low pH, <sup>b</sup> survival rate after 4h in bile salts, <sup>c</sup>0, no hydγrolysis; 1, partial hydrolysis.
 <sup>d</sup> a-haemolysis, γ-haemolysis, <sup>e</sup> A: ampicillin, V: vancomycin, G: gentamycin, K: kanamycin, S: streptomycin, P: penicillin, E: erythromycin, T: tetracycline, C: chloramphenicol



#### Fermentation procedure

- Olives: Green olives Halkidiki variety
- ✓ Brine: 10 % (w/v) NaCl initial level
- Fermentation process: Spanish style processing

#### Fermentation treatments:

- Spontaneous process (control)
- Inoculated process with L. pentosus B 281
- Inoculated process with L. plantarum B 282
- Inoculated process with L. rhanmosus GG

 LAB strains were isolated from three different stages of the olive fermentation treatments (1, 56 and 117 days)

Molecular tool: Pulse Field Gel Electrophoresis (PFGE)



#### **Evolution of microbial association**



PROB

◆ Total Viable Counts, ■ Lactic Acid Bacteria, ▲ Yeasts, x Enterobacteriaceae



## Evolution of pH / acidity





#### Organoleptic assessment





## Ecotrophelia 2012 – Probiotic olives





### Packaging of Probiotic olives

- Olives: Green olives cv. Halkidiki
- Packaging: Plastic pouches (OPE 15 µm / PE 80 µm)
- Storage temp: 4 and 20 °C
- Storage time: 12 months
- **Composition:** Fermented olives, 150 g
  - Brine 9%, 250 ml
  - Citric acid, 0.2 %
  - Ascorbic acid, 0.15 %



Olives previously fermented by Packing Treatments: (i) indigenous microbiota (spontaneous process) (ii) *L. pentosus* B281 (iii) *L. plantarum* B282 (iv) mixture of both strains



#### Evolution of microbial association at 4°C





#### Evolution of microbial association at 20°C





# Survival rate of inoculated strains during storage according to molecular analysis

|                   |                             | Survival rate      |                   |  |  |  |  |
|-------------------|-----------------------------|--------------------|-------------------|--|--|--|--|
| Inoculated strain | Fermentation<br>time (days) | 4°C                | 20°C              |  |  |  |  |
| L. pentosus B281  | 1                           | 90%                | 90%               |  |  |  |  |
|                   | 196                         | 100%               | 20%               |  |  |  |  |
|                   | 357                         | 93.75%             | 70%               |  |  |  |  |
|                   |                             |                    |                   |  |  |  |  |
| L. plantarum B282 | 1                           | 87.5%              | 87.5%             |  |  |  |  |
|                   | 196                         | 96%                | 0%                |  |  |  |  |
|                   | 357                         | 0%                 | 0%                |  |  |  |  |
|                   |                             |                    |                   |  |  |  |  |
| Mixed culture     | 1                           | 90% B281/ 0% B282  | 90% B281/ 0% B282 |  |  |  |  |
| (B281 and B282)   | 196                         | 100% B281/ 0% B282 | 60% B281/ 0% B282 |  |  |  |  |
|                   | 357                         | 95.6% B281/0% B282 | 50% B281/ 0% B282 |  |  |  |  |



#### Production of probiotic olives at industrial scale

#### Lye treatment

1.7 % NaOH (w/v) for about 10-12 hours



#### **Debittering process**



#### Washing scheme

1<sup>st</sup> washing: 4 hours 2<sup>nd</sup> washing: 8 hours







#### Brining

10 % (w/v) NaCl 0.1% lactic acid (95%) 0.014 % HCl





#### Production of probiotic olives at industrial scale

Inoculation



Fermentation in 12tn total capacity tank (7-7.5tn olives and 4.5-5tn

brine)

Initial salt 10% w/v

Acidification with 0.1% (v/v) lactic acid and 0.014% (v/v) HCl



After 24h of brining

L. pentosus B281 culture

were added in the tank

Final concentration of inoculum ap. 10<sup>7</sup> CFU/mL



Fermentation was undertaken in outdoor conditions



#### Evolution of microbial association



# 3

#### Changes in pH, acidity, salt level





#### Survival rate of inoculated culture

| Inoculated strain | Fermentation time<br>(days) | Survival rate<br>(PFGE) |
|-------------------|-----------------------------|-------------------------|
| L. pentosus B281  | 5                           | 100%                    |
|                   | 97                          | 95.24%                  |



# Table olive packaging









## Traditional

Glass / metal containers



#### New methods

- Multi-laminated pouches
- Rigid plastic containers
- Modified atmospheres





#### Thermal pasteurization



Glass filling (375 ml)



Brine addition (65°C)



**Close and air removal** 





**Inlet** pasteurization (30°C)







**Outlet pasteurization** (60°C)

**Pasteurization** (80°C/15-20 min)

#### Total processing time 60 min



## Packaging in bulk





#### Packaging in pouches with brine and vacuum



### Packaging in pouches with brine and vacuum

✓ Olives: Green olives "Conservolea"
 ✓ Packaging: HDPE 60 µm
 ✓ Temperature: 20 °C
 ✓ Storage time: 180 days

Packages

Brine 6 % NaCl
 Brine 6 % NaCl + 0,3 % lactic acid
 0,3 % lactic acid
 Brine 6 % NaCl + 0,3 % citric acid



## Changes in the population of microbes



Storage time (days)

Yeasts, Lactic acid bacteria, Total viable counts



## Changes in the pH of olives and brine

|                | ŀ              | A             |                | B                | С              |               |  |
|----------------|----------------|---------------|----------------|------------------|----------------|---------------|--|
| Time<br>(days) | pH<br>(olives) | pH<br>(brine) | pH<br>(olives) | pH<br>(brine)    | pH<br>(olives) | pH<br>(brine) |  |
| 0              | 4,1            | 7,2           | 4,1            | 2,6              | 4,1            | 2,1           |  |
| 30             | 4,1            | 4,0           | 4,0            | 3,5              | 3,5            | 3,4           |  |
| 60             | 4,2            | 4,0           | 3,7            | 3,5              | 3,6            | 3,4           |  |
| 90             | 4,2            | 4,1           | 3,8            | 3,6              | 3,6            | 3,5           |  |
| 120            | 4,3            | 4,1           | 3,9            | <mark>3,8</mark> | 3,7            | 3,6           |  |
| 150            | 4,3            | 4,1           | 3,9            | 3,8              | 3,7            | 3,6           |  |
| 180            | 4,3            | 4,1           | 3,9            | 3,8              | 3,7            | 3,6           |  |

A: Brine 6% NaCl

B: Brine 6% NaCl + 0,3% lactic acid

C: Brine 6% NaCl + 0,3% lactic and citric acid



### Sensory evaluation



Brine 6% NaCl Brine 6% NaCl + 0,3 % lactic acid Brine 6% NaCl + 0,3 % lactic and 0,3 % citric acid

#### Packaging in pouches under modified atmospheres

- ✓ Olives:
- Packaging:
- ✓ Temperature:
- ✓ Storage time:

Green olives "Conservolea" HDPE 60 µm 20 °C 180 days

Packages Aerobic storage (control) Vacuum packing 40 % CO<sub>2</sub>/ 30% O<sub>2</sub> / 30 % N<sub>2</sub>



## Changes in the population of microbes



Storage time (days)

Yeasts, Lactic acid bacteria, Total viable counts



## Changes in pH and texture of olives

|                | Air                     |     | VF                      |     | MAP                     |     |  |
|----------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|--|
| Time<br>(days) | <b>Texture</b><br>(N/g) | рН  | <b>Texture</b><br>(N/g) | рН  | <b>Texture</b><br>(N/g) | рН  |  |
| 0              | 42,3                    | 4,1 | 42,3                    | 4,1 | 42,3                    | 4,1 |  |
| 30             | 37,1                    | 4,3 | 40,2                    | 4,2 | 38,5                    | 4,4 |  |
| 60             | 32,6                    | 4,2 | 38,7                    | 4,2 | 25,7                    | 4,2 |  |
| 90             | 28,1                    | 4,3 | 36,3                    | 4,3 | 32,1                    | 4,3 |  |
| 120            | 23,5                    | 4,3 | 34,1                    | 4,4 | 30,8                    | 4,2 |  |
| 150            | 21,6                    | 4,3 | 32,7                    | 4,4 | 27,1                    | 4,4 |  |
| 180            | 14,0                    | 4,3 | <mark>31,6</mark>       | 4,4 | 25,8                    | 4,4 |  |



#### Sensory evaluation



Air, VP, 40%CO<sub>2</sub>/30%O<sub>2</sub>/30%N<sub>2</sub>



# Table olives safety







#### Survival of pathogens in fermented green olives

Fermented green olives







Addition of fresh brine NaCl 6% (w/v)



Addition of the pathogenic bacteria (Cocktail of 5 strains of each bacterium)

*E. coli* O157:H7 *Salmonella* Enteritidis *Listeria monocytogenes*

Storage at 20°C



#### Survival of *E.coli* 0157:H7



Changes in the population of LAB ( $\diamond$ ), yeasts ( $\blacksquare$ ) and *E. coli* O157:H7 ( $\blacktriangle$ ) in brine (a) and olive fruits (b), during storage of green table olives in pouches covered with brine at 20°C. ( $\Delta$ ): pathogen not detected after the enrichment method.



#### Survival of Salmonella Enteritidis



Changes in the population of LAB ( $\diamond$ ), yeasts ( $\blacksquare$ ) and *S*. Enteritidis ( $\blacktriangle$ ) in brine (a) and olive fruits (b), during storage of green table olives in pouches covered with brine at 20°C. ( $\Delta$ ): pathogen not detected after the enrichment method



#### Survival of Listeria monocytogenes



Changes in the population of LAB ( $\diamond$ ), yeasts ( $\blacksquare$ ) and *L. monocytogenes* ( $\blacktriangle$ ) in brine (a) and olive fruits (b), during storage of green table olives in pouches covered with brine at 20°C. ( $\Delta$ ): pathogen not detected after the enrichment method.

#### Survival of pathogens in fermented black olives

#### Fermented black olives







#### Addition of the pathogenic bacteria

•*E. coli* 0157:H7

- Salmonella Enteritidis
- Salmonella Typhimurium
- •Listeria monocytogenes
- Staphulococcus aureus





#### Survival of Salmonella Enteritidis and Typhimurium

#### Table 1

Populations of Salmonella enterica ser. Enteritidis and Salmonella enterica ser. Typhimurium recovered from inoculated natural black olives during storage at 4 and 20 °C.

| S. Enteritidis<br>Strain | T (°C) | Population (log CFU/g) on: |                         |       |       |       |       |        |        |  |
|--------------------------|--------|----------------------------|-------------------------|-------|-------|-------|-------|--------|--------|--|
|                          |        | Day 0                      | Day 1                   | Day 2 | Day 3 | Day 5 | Day 9 | Day 12 | Day 15 |  |
| B-56                     | 4      | $4.6\pm0.4^{\text{Aa}}$    | $3.9\pm0.2^{Ba}$        | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-57                     |        | $2.8 \pm 0.4^{b}$          | nd                      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| ATCC 13076               |        | $4.1 \pm 0.4^{Ac}$         | $2.9 \pm 0.4^{Bb}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-287                    |        | $4.0 \pm 0.5^{Ac}$         | $2.2 \pm 0.2^{Bc}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| Mixed culture            |        | $4.0 \pm 0.2^{Ac}$         | $3.2 \pm 0.1^{Bb}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-56                     | 20     | $4.6\pm0.4^{Aa}$           | 3.3 ± 0.2 <sup>Ba</sup> | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-57                     |        | $2.8 \pm 0.4^{b}$          | nd                      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| ATCC 13076               |        | $4.1 \pm 0.4^{\circ}$      | nd                      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-287                    |        | $4.0 \pm 0.5^{\circ}$      | nd                      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| Mixed culture            |        | $4.0 \pm 0.2^{Ac}$         | $3.5 \pm 0.4^{Ba}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| S. Typhimurium           |        |                            |                         |       |       |       |       |        |        |  |
| B-137                    | 4      | $4.6 \pm 0.3^{Aa}$         | 4.3 ± 0.1 Aa            | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-193                    |        | $4.3\pm0.2^{Aa}$           | $3.4 \pm 0.1^{Bb}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-194                    |        | $4.5\pm0.4^{Aa}$           | $3.7\pm02^{\text{Bb}}$  | nd    | nd    | nd    | nd    | nd     | nd     |  |
| Mixed culture            |        | $4.7 \pm 0.1^{Aa}$         | $4.9 \pm 0.1^{Ac}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-137                    | 20     | $4.6\pm0.3^{Aa}$           | $3.5 \pm 0.1^{Ba}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-193                    |        | $4.3 \pm 0.2^{Aa}$         | 3.1 ± 0.3 <sup>Ba</sup> | nd    | nd    | nd    | nd    | nd     | nd     |  |
| B-194                    |        | $4.5\pm0.4^{Aa}$           | $3.0 \pm 0.6^{Ba}$      | nd    | nd    | nd    | nd    | nd     | nd     |  |
| Mixed culture            |        | $4.7 \pm 0.1^{a}$          | nd                      | nd    | nd    | nd    | nd    | nd     | nd     |  |

nd: none detected (<2.0 log CFU/g of olives) by direct plating followed by enrichment where absence of the pathogen was observed (<1 CFU/25 g of olives). Means with different capital letters in the same row are significantly different ( $P \le 0.05$ ). Means with different lowercase letters in the same column are significantly different ( $P \le 0.05$ ).

#### Survival of *E. coli* 0157:H7 and *S. aureus*

#### Table 2

Populations of Escherichia coli O157:H7 recovered from inoculated natural black olives during storage at 4 and 20 °C.

| Strain        | T (°C) | Population (log CFU/g) on: |                    |       |       |       |       |        |        |
|---------------|--------|----------------------------|--------------------|-------|-------|-------|-------|--------|--------|
|               |        | Day 0                      | Day 1              | Day 2 | Day 3 | Day 5 | Day 9 | Day 12 | Day 15 |
| B-15          | 4      | $3.8\pm0.2^{Aa}$           | $4.9\pm0.2^{Ba}$   | nd    | nd    | nd    | nd    | nd     | nd     |
| B-16          |        | $4.3 \pm 0.2^{Aab}$        | $4.9 \pm 0.1^{Ba}$ | nd    | nd    | nd    | nd    | nd     | nd     |
| B-18          |        | $4.2 \pm 0.1^{Aab}$        | $4.5 \pm 0.2^{Aa}$ | nd    | nd    | nd    | nd    | nd     | nd     |
| Mixed culture |        | $4.5 \pm 0.1^{Ab}$         | $4.5 \pm 0.3^{Aa}$ | nd    | nd    | nd    | nd    | nd     | nd     |
| B-15          | 20     | $3.8 \pm 0.2^{a}$          | nd                 | nd    | nd    | nd    | nd    | nd     | nd     |
| B-16          |        | $4.3 \pm 0.2^{ab}$         | nd                 | nd    | nd    | nd    | nd    | nd     | nd     |
| B-18          |        | $4.2 \pm 0.1^{ab}$         | nd                 | nd    | nd    | nd    | nd    | nd     | nd     |
| Mixed culture |        | $4.5 \pm 0.1^{Ab}$         | $4.0 \pm 0.5^{A}$  | nd    | nd    | nd    | nd    | nd     | nd     |

nd: none detected (<2.0 log CFU/g of olives) by direct plating followed by enrichment where absence of the pathogen was observed (<1 CFU/25 g of olives). Means with different capital letters in the same row are significantly different ( $P \le 0.05$ ). Means with different lowercase letters in the same column are significantly different ( $P \le 0.05$ ).

#### Table 4

Populations of S. aureus recovered from inoculated natural black olives during storage at 4 and 20 °C.

| Strain        | T (°C) | Population (log CFU/g) on: |                     |                    |       |       |       |        |        |
|---------------|--------|----------------------------|---------------------|--------------------|-------|-------|-------|--------|--------|
|               |        | Day 0                      | Day 1               | Day 2              | Day 3 | Day 5 | Day 9 | Day 12 | Day 15 |
| B-95          | 4      | $5.0 \pm 0.2^{Aa}$         | $3.8 \pm 0.6^{Ba}$  | nd                 | nd    | nd    | nd    | nd     | nd     |
| ATCC 6538     |        | $5.1 \pm 0.2^{Aa}$         | $3.5 \pm 0.1^{Bab}$ | $2.6 \pm 0.1^{Ba}$ | nd    | nd    | nd    | nd     | nd     |
| B-135         |        | $5.0 \pm 0.2^{Aa}$         | $3.3 \pm 0.2^{Bbc}$ | $2.2 \pm 0.3^{Ca}$ | nd    | nd    | nd    | nd     | nd     |
| Mixed culture |        | $5.1 \pm 0.2^{Aa}$         | $2.9 \pm 0.3^{Bc}$  | $2.6 \pm 0.2^{Ba}$ | nd    | nd    | nd    | nd     | nd     |
| B-95          | 20     | $5.0 \pm 0.2^{Aa}$         | $3.5 \pm 0.1^{Ba}$  | nd                 | nd    | nd    | nd    | nd     | nd     |
| ATCC 6538     |        | $5.1 \pm 0.2^{Aa}$         | $3.3 \pm 0.5^{Ba}$  | nd                 | nd    | nd    | nd    | nd     | nd     |
| B-135         |        | $5.0 \pm 0.2^{Aa}$         | $3.3 \pm 0.3^{Ba}$  | nd                 | nd    | nd    | nd    | nd     | nd     |
| Mixed culture |        | $5.1 \pm 0.2^{Aa}$         | $3.4\pm0.3^{Ba}$    | nd                 | nd    | nd    | nd    | nd     | nd     |

nd: none detected (<1.0 log CFU/g of olives) by direct plating.

Means with different capital letters in the same row are significantly different ( $P \le 0.05$ ). Means with different lowercase letters in the same column are significantly different ( $P \le 0.05$ ).



#### Survival of L. monocytogenes

#### Table 3

Populations of Listeria monocytogenes recovered from inoculated natural black olives during storage at 4 and 20 °C.

| Strain        | T (°C) | Population (log CFU/g) on: |                             |       |       |       |       |        |        |
|---------------|--------|----------------------------|-----------------------------|-------|-------|-------|-------|--------|--------|
|               |        | Day 0                      | Day 1                       | Day 2 | Day 3 | Day 5 | Day 9 | Day 12 | Day 15 |
| B-128         | 4      | $5.6 \pm 0.5^{Aa}$         | $3.7\pm0.1^{Ba}$            | +     | +     | +     | +     | +      | +      |
| B-129         |        | $5.1 \pm 0.3^{Aa}$         | $2.6 \pm 0.4^{Bb}$          | +     | +     | +     | +     | +      | +      |
| B-131         |        | $5.3 \pm 0.2^{Aa}$         | $2.8 \pm 0.3^{Bb}$          | +     | +     | +     | +     | +      | +      |
| Mixed culture |        | $4.9\pm0.4^{Aa}$           | $3.6 \pm 0.2^{Ba}$          | +     | +     | +     | +     | +      | +      |
| B-128         | 20     | $5.6 \pm 0.5^{Aa}$         | $4.4 \pm 0.1^{Ba}$          | nd    | nd    | nd    | nd    | nd     | nd     |
| B-129         |        | $5.1 \pm 0.3^{Aa}$         | $2.7 \pm 0.2^{Bb}$          | +     | +     | +     | +     | +      | +      |
| B-131         |        | $5.3 \pm 0.2^{Aa}$         | $2.3 \pm 0.2^{\text{Bb}}$   | nd    | nd    | nd    | nd    | nd     | nd     |
| Mixed culture |        | $4.9\pm0.4^{Aa}$           | $2.3 \pm 0.4^{\mathrm{Bb}}$ | nd    | nd    | nd    | nd    | nd     | nd     |

nd: none detected (<2.0 log CFU/g of olives) by direct plating followed by enrichment where absence of the pathogen was observed (<1 CFU/25 g of olives). +: enrichment positive.

Means with different capital letters in the same row are significantly different ( $P \le 0.05$ ). Means with different lowercase letters in the same column are significantly different ( $P \le 0.05$ ).



#### Thank you for your attention